A Blow-up Criterion for a Degenerate Parabolic Problem Due to a Concentrated Nonlinear Source

نویسندگان

  • C. Y. CHAN
  • R. BOONKLURB
چکیده

Let q, a, b, and T be real numbers with q ≥ 0, a > 0, 0 < b < 1, and T > 0. This article studies the following degenerate semilinear parabolic first initial-boundary value problem, xut(x, t)− uxx(x, t) = aδ(x− b)f (u(x, t)) for 0 < x < 1, 0 < t ≤ T, u(x, 0) = ψ(x) for 0 ≤ x ≤ 1, u(0, t) = u(1, t) = 0 for 0 < t ≤ T, where δ (x) is the Dirac delta function, and f and ψ are given functions. It is shown that for a sufficiently large, there exists a unique number b∗ ∈ (0, 1/2) such that u never blows up for b ∈ (0, b∗] ∪ [1− b∗, 1), and u always blows up in a finite time for b ∈ (b∗, 1− b∗). To illustrate our main results, two examples are given.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A note on critical point and blow-up rates for singular and degenerate parabolic equations

In this paper, we consider singular and degenerate parabolic equations$$u_t =(x^alpha u_x)_x +u^m (x_0,t)v^{n} (x_0,t),quadv_t =(x^beta v_x)_x +u^q (x_0,t)v^{p} (x_0,t),$$ in $(0,a)times (0,T)$, subject to nullDirichlet boundary conditions, where $m,n, p,qge 0$, $alpha, betain [0,2)$ and $x_0in (0,a)$. The optimal classification of non-simultaneous and simultaneous blow-up solutions is determin...

متن کامل

Dynamic Systems and Applications 18 (2009) 121-128 QUENCHING CRITERIA FOR A DEGENERATE PARABOLIC PROBLEM DUE TO A CONCENTRATED NONLINEAR SOURCE

A criterion for the quenching of the solution for a degenerate semilinear parabolic first initial-boundary value problem with a concentrated nonlinear source situated at b is given. The locations of b for global existence of the solution and for the quenching of the solution are given. AMS (MOS) Subject Classification. 35K60, 35K57, 35K65, 35B35

متن کامل

Global Solutions and Blow-up Profiles for a Nonlinear Degenerate Parabolic Equation with Nonlocal Source

This paper deals with a degenerate parabolic equation vt = ∆v + av1 ∥v∥1 α1 subject to homogeneous Dirichlet condition. The local existence of a nonnegative weak solution is given. The blow-up and global existence conditions of nonnegative solutions are obtained. Moreover, we establish the precise blow-up rate estimates for all the blow-up solutions.

متن کامل

Blow-up and global existence profile of a class of fully nonlinear degenerate parabolic equations

This paper is mainly concerned with the blow-up and global existence profile for the Cauchy problem of a class of fully nonlinear degenerate parabolic equations with reaction sources. MSC: 35B33, 35B40, 35K65, 35K55

متن کامل

Blow up problems for a degenerate parabolic equation with nonlocal source and nonlocal nonlinear boundary condition

* Correspondence: zhgs917@163. com Nonlinear Scientific Research Center, Faculty of Science, Jiangsu University, Zhenjiang 212013, China Full list of author information is available at the end of the article Abstract This article deals with the blow-up problems of the positive solutions to a nonlinear parabolic equation with nonlocal source and nonlocal boundary condition. The blow-up and globa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007